Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 28(9): 103696, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419210

RESUMO

Lactose is one of the most widespread excipients used in the pharmaceutical industry. Because of its water solubility and acceptable flowability, lactose is generally added into tablet formulation to improve wettability and undesirable flowability. Based on Quality by Design, a better understanding of the critical material attributes (CMAs) of raw materials is beneficial in guiding the improvement of tablet quality and the development of lactose. Additionally, the modifications and co-processing of lactose can introduce more-desirable characteristics to the resulting particles. This review focuses on the functionality, CMAs, applications, modifications and co-processing of lactose in tablets.


Assuntos
Excipientes , Lactose , Comprimidos , Solubilidade , Composição de Medicamentos/métodos
2.
AAPS PharmSciTech ; 24(5): 113, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127722

RESUMO

Microcrystalline cellulose (MCC) of different grades from different manufacturers differ in particulate and powder properties significantly. The choice of MCC is important to the development of a tablet formulation with satisfactory quality. In this study, the effects of five different MCCs (KG 802, Pharmacel 102, MC 302, M 200, and PH 112) that had different compactibility and tablet disintegration on the tablet quality of two different natural plant products (NPPs) were evaluated systematically, including Crataegi Folium ethanol extract (CF-E) and Sarcandrae Herba water extract (SH-W). The result of D-optimal mixture designs demonstrated that KG 802 showed the best ability to improve compression properties and tensile strength, followed by Pharmacel 102, MC 302, and M 200. PH 112 did the weakest. However, MCCs of different grades had no different influence on the disintegration of NPP tablets. Similar results were found in the experiments of the two different NPP powders, suggesting the generalization of the finding. Moreover, KG 802-containing CF-E formulations showed the largest optimum region size, that is, the lowest production risk. The design space sizes of SH-W were hardly sensitive to the change of MCCs, due to the better tabletability. In conclusion, the properties of MCCs could transfer to the high NPP loading (70%) formulations, leading to the variations on the compression properties and tablet quality. The poorer the tabletability of NPP, the more obvious the variation. The result is promising for the use of MCC and the manufacturing of high drug-loading NPP tablets by direct compression.


Assuntos
Celulose , Composição de Medicamentos/métodos , Celulose/química , Resistência à Tração , Comprimidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...